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Abstract. The need for the search, detection and rescue of disaster survivors 
arises in many emergency situations in military and civil applications. Suppose a 
number of people are trapped in ruins after an earthquake or tsunami. Their 
medical condition depends on their location, detection time and the time of the 
rescue operation. In order to efficiently detect and perform the needed rescue 
operations, a network of wireless sensors is used which provide acoustic, seismic, 
electromagnetic, gravimetric and other information. The information is processed 
automatically to yield prior probabilities of location and expected rescue times 
for each potential target. The acquired information from the sensors is imperfect 
because under extraordinary and severe circumstances, two types of errors may 
occur: (i) a "false-negative detection test” – it is a case when a target is 
overlooked during the test; and (ii) a "false-positive detection", or "false alarm" 
– when a not-a-target location is wrongly classified as a sought target. Therefore, 
non-zero probabilities of overlooking a hidden target and a "false alarm" exist. 
We suggest a two-phase solution to the problem of scheduling detection and 
rescue operations. First, the disaster area is divided into sub-areas and available 
rescue teams and sensors are assigned. Second, a schedule is found for the rescue 
teams to perform the rescue operations (in parallel). We seek to find the best 
coverage of the  disaster sub-areas served by rescue teams and to schedule the 
search-and-rescue operations in each sub-area while minimizing the search-and-
rescue time and maximizing the number of saved lives within a given search time 
limit. The problem is formulated as a non-standard two-stage assignment / 
scheduling problem and a fast combinatorial real-time algorithm is suggested. 

Keywords: disaster management, detection-and-rescue problem, wireless sensor 
network, imperfect inspections, best coverage, scheduling, fast on-line algorithm 

1   Introduction 

The need for search, detection, and rescue (DAR) of disaster survivors arises in many 
emergency situations in military and civil applications. Suppose that a large number of 
people are trapped in ruins after an earthquake, a tsunami wave, or a terrorist attack. 
Their medical condition and survival probabilities depend on their location, the time 
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needed to locate them and the evacuation (rescue) time. For DAR operations to be 
efficient, a computer-aided network of wireless sensors of different types is used which 
provide acoustic, seismic, electromagnetic, gravimetric and other information about the 
targets (see [6, 11, 17]).  

Real-time monitoring and quick response are the most essential requirements in the 
design of an emergency response system. Different types of sensors are used together 
and the collected information is incorporated into a wireless sensor networks (WSNs) 
thus allowing for the communication between both sensors and human rescue teams. For 
example, temperature and movement-detection sensors are used to monitor the location 
of people, satellite cameras can track the spread of the disaster and depict the disaster 
area map while ultrasonic sensors measure the range to targets in the environment and 
report dynamic changes of maps due to the changes of built structures through 
destruction of debris. The use of such heterogeneous tools must be supported by 
innovative planning or scheduling tools in order to exploit and integrate the capabilities 
of each sensor and provide an optimal use of all available resources.  

In this work, we consider scenarios that require locating and identifying multiple 
stationary and dynamic targets. We assume the presence of a relevant communication 
infrastructure enabling the command center and the rescue teams to continuously 
exchange information. In order to plan an effective team deployment over the search 
area, it is necessary to rapidly gather as much information as possible about the targets 
and the area, and use this information to define joint search-and rescue mission plans. A 
mission plan consists of a sequence of actions to be performed by an agent for a certain 
time duration as defined by environmental factors and geographical locations. 

Mission planning is modeled as a mixed integer linear programming problem (MILP) 
in which the model simultaneously allocates predefined sub-areas of a disaster area to 
be explored and specifies the schedule of the actions that each agent should follow. The 
resulting plans guarantee optimal results for the search activities. A number of 
constraints are included to model cooperation and connectivity relationships among 
agents (sensors and human rescue teams). For example, at the beginning of the search 
process, the agents are uniformly spread over the area, while in later stages they are 
focused on specific subareas according to importance. 

Initially, the data from the sensors is collected by the network and integrated to define 
prior probabilities of location, the damage scale and expected rescue times for each 
potential target. The problem presented in this paper can be partitioned into two stages. 
First, the disaster area is divided into sub-areas and available rescue teams are assigned 
to each sub-areas in which they will perform in parallel their DAR missions. At the 
second stage, a detailed schedule of operations is planned ahead for each rescue team. 
Notice that the detection-and-rescue operations at the second stage are implemented 
simultaneously by several rescue teams. The goal is to find the best coverage of the 
disaster area by mobile rescue teams and to schedule the search-and-rescue operations 
in each sub-area in order to minimize the search-and-rescue time and maximize the 
number of saved lives within the given limits of the search-and-rescue time. This 
problem is a natural extension of similar search-and-rescue problems studied in [7-9, 11, 
13, 16].  

The automatic information-gathering system gathers information from sensors 
scattered over a geographical region to help the rescue teams to find the targets in 
minimum time. The inspections are imperfect because under uncertain environmental 
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circumstances, two types of errors may occur: (i) a "false-negative” detection test – a 
target object is overlooked during the test; and (ii) a "false-positive” detection or a "false 
alarm", which wrongly classifies a clean location as a sought target. Hence, non-zero 
probabilities of overlooking the hidden target as well as that of a "false alarm" exist. We 
propose to model the DAR problem as a scheduling problem involving several search 
teams working in parallel, and subject to time/budget and probabilistic constraints. The 
general problem of selecting the best schedule is NP-hard thus, the proposed solution is 
an approximation or an “almost-optimal” solution. 

The remainder of the paper is organized as follows. In Section 2, we provide a review 
of related works and approaches for using smart sensor networks to detect/rescue hidden 
objects while focusing on detecting and rescuing of human survivors. In Section 3, we 
provide a formal formulation of the problem and propose a mathematical model. In 
Section 4 we propose a solution using a fast algorithm (without significant 
computational load). A numerical example is given in Section 5 and Section 6 contains 
a summary along with future research directions.  

 2   Related Work 

Planning of search-and-detection operations has been researched thoroughly in the area 
of operational research and artificial intelligence. The pioneer work done by Bernard 
Koopman done during World War II aimed to provide efficient methods for detecting 
hidden submarines. See [2], [15] and [19] for a detailed survey and the bibliography of 
the discrete search literature. In recent years, the problem of planning and scheduling 
of detection operations has become critical in light of increasing growth of natural and 
human-made disasters and the usage of a WSN has become popular. A WSN is an 
advanced technology for collecting diverse data from multiple sensors. A typical WSN 
system is distributed within the sensor field and consists of a number of sensor nodes, 
such as seismic, acoustic and magnetic anomalies. See [1] for a comprehensive survey 
regarding the main factors influencing the WSN design. The WSN collects thousands 
of raw data and works as a centralized or decentralized fusion system (see [18]). In the 
centralized case, the data is collected by individual sensors and sent through the sink 
node to a central dedicated fusion node, task manager node for processing while in the 
decentralized case the information is collected and analyzed by a set of autonomous 
devices.  

We consider a situation where the basic functions of the WSNs are to monitor and 
control environmental parameters related to the detection-rescue and collectively 
transfer the data obtained through the network to a central location. In WSNs, the mobile 
agents are added into the system to improve its performance and act as automatic carriers 
of data. [4] provides more examples and details of modern applications of WSNs 
including battlefield surveillance, detection of enemy intrusion and detection and 
rescuing of hidden targets. Many search-planning algorithms are based on a cellular 
partitioning of the disaster area (see [7] and the references within). In [3], a multi-scale 
grid is used for representing the environment. [10] studied the usage of UAVs 
(unmanned aircraft vehicles) for DAR missions. Other research has studied the use of 
autonomous teams of robots for DAR (see [14]). MILP models has been successfully 
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used in search planning problems and mission assignment ([5]). An advantage of a MILP 
formulation is that, given exact input data, an optimal solution can be provided. 
Compared to latter works, we put an emphasis on the parallel work of several search-
and-rescue teams and solve both task allocation and scheduling problems. 

To conclude, we consider a different objective function and corresponding 
mathematical formulations of the problem. This problem is a natural extension of similar 
search-and-rescue problems studied in [7-9, 11, 13, 16]. Our contribution is threefold: 
(i) a new two-stage decomposition methodology partitioning the initial mission planning 
problem into an assignment and scheduling components aimed to enhance the efficiency 
of DAR missions performed by several teams of networked agents (sensors and human 
teams); (ii) a novel generalized assignment problem (used at the first stage) including 
disjunctive and resource constraints in the context of DAR missions; (iii) a novel 
scheduling problem (of the second stage) and the design of a new fast scheduling 
algorithm. 

3   Problem Description and Mathematical Formulation 

As said above, the goal of the present study is two-fold. First, we find the best coverage 
of the disaster area by a mobile rescue teams and, second, we optimally schedule the 
search-and-rescue operations in each sub-area in order to minimize the search-and-
rescue time and maximize the number of saved lives within the given limits of the 
search-and-rescue time. At the first stage, the disaster area is divided into sub-areas and 
available rescue teams are assigned to the disaster sub-areas in which they will perform 
in parallel their DAR missions. At the second stage, a detailed schedule of operations 
is planned ahead for each rescue team. The DAR operations at the second stage are 
implemented simultaneously by several rescue teams. 

3.1   The coverage of the Disaster Area 

The planning process starts with discretizing the known disaster area into a set of 
squared environmental cells representing the spatial elements that should be served by 
the available WSN and the rescue teams. Without loss of generality, the disaster area is 
decomposed into a uniform cell grid, the cells’ set being denoted by,A A n= . In this 

simple, but effective scenario, the disaster area is uniformly partitioned in as much 
equal sub-areas as possible within the available time reserve and personnel resources. 
In real-world scenarios, the disaster area is usually irregular and cluttered; we represent 
the non-uniform effect on both mobility/effectiveness of the rescue teams, on the one 
hand, and sensing of the WSN throughout the field, on the other. For this purpose, we 
assume that the total number of available human teams is known and equals M  while 
the total number of available sensors is denoted byS . 

We are now ready to formulate the area coverage-planning problem as a generalized 
assignment problem with resource and precedence constraints. As will be seen next, the 
problem is a special case of the MILP class. 
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Define, 
hjf - performance effectiveness function, corresponding to a human rescue 

teamh , 1,2..,h m= , assigned to perform the detection-and-rescue missions in cellj ,

1,2..,j n= . hjf  is characterized by the expected number of detected/saved human lives 

during performing the DAR mission (in cell j ) which, in turn, depends on the local sub-

area characteristics, the agent skills and the search time. Therefore, the entire 
performance of the mission planning for the effective coverage by the agents strictly 
depends on the allocation of the agents to the sub-areas. These characteristics are 
estimated by the rescue/evacuation manager based on the data provided by the WSNs. 
This issue is particularly relevant in the case of the heterogeneous sensors and teams 
working simultaneously (“in parallel”). We take into account disjunctive conditions 
stating that each cell can be served by a human team and/or by an automated device, like 
a mobile robot or an unmanned aerial vehicle UAV. Precedence relations are imposed 
according to which, in any cell, first the sensors measurements are to be performed, after 
which human teams are able to start their rescue mission.  

In addition, define B and T the total budget at hand and the total time for the DAR 
operation respectively and byhjc , hjt and hjd the cost, the required time, and sensor cost 

required to perform a DAR in cell j  by teamh . Also, let jk be the number of rescue 

teams in sub area j  (can be larger than 1). Finally, let ijX  and sjY  be binary variable 

defined as follows:  

1 rescue team  assgined to cell 

0ij

i j
X

else

= 
  

and  

1 sensor  is assgined to cell 

0sj

s j
Y

else

= 
  

Then the constrained multi-agent coverage problem (CMACP) can be formulated as 
presented in (1)-(7). 
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The first constrain is immediate since there is a total of M teams while (2)–(4) 

represent the total budget of the human teams, the total budget of the WSN system and 
the total time given to perform the rescue operation. (5) follows from the definition of kj 
and (6) corresponds to the fact that every rescue team should be assigned to a sub area. 
Since sensor measurement must precede the rescue mission in all sub-areas, we have (7).  

The presented generalized assignment problem with precedence and resource 
constraints is a special class of the MILP problem. We have used the MILP solver (a 
commercial optimization package called GAMS) and obtained an optimal solution in 
under 5 minutes for small and medium size instance ( 20m ≤ , 100n ≤ ). 

3.2   The Scheduling of Detection-and-Rescue Operations in Each Sub-Area  

After completing phase 1, i.e., assigning the agents to the different sub area (cells) we 
can continue to phase 2 and define the sequence of detection-and-rescue operations. 
When defining the sequence of operations, the most important goal is to maximize the 
number of saved human survivors (targets) and then protection of property.  

We consider the following scenario. The targets are clustered, that is, located in 
groups of linked sites (cells) where the targets in each cluster are processed 
simultaneously while each group is inspected and rescued non-stop from one cluster to 
the other. Since the coverage of the area into the cells is sufficiently fine-grained, we 
may assume that each cell contains one target (at the most). If the number of rescue 
teams is K (known in advance since it is defined by the resource constrain), a cluster of 
K  targets can be processed simultaneously. At the first step we determine the cluster of 
size K that contains the maximum of expected number of potential survivors in its cells 
(and will be processed by K rescue teams). After the first cluster is processed, the K
teams are assigned to the next cluster (again, containing K  targets). The targets are 

detected and rescued until the given time reserve 0T is exhausted, or all targets are 

discovered and saved. The problem is to efficiently detect and rescue the targets so as to 
maximize the possible performance (the number of saved lives) of the detection-and 
rescue mission.  

For simplicity, we consider the following special case of scheduling the human rescue 
teams, the scheduling of automated search teams and heterogeneous smart sensors being 
handled along the same line. Any inspection of any cell (either containing the target or 
not) is imperfect. This means that a prior probability αi of a false alarm and a prior 
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probability βi of overlooking the target are given. This implies that each cell may be 
examined more than once. It follows that a detection sequence will be finite but 
repetitions of the same cells are possible. Each rescue team performs a set of sequential 
operations in order to identify and rescue the target. The times and expected efficiency 
of lifesaving during the operations being given, the goal of the detection and rescue 
process is to determine a search strategy which the rescue team employs to locate and 
rescue the maximum number of targets within the given reserve of detection-and-rescue 
time. 

A disaster area contains m squared sub-areas. Each are contains mi potential target 
locations, mi<m, i=1,2,...,N and is characterized by the following known parameters: 

– 
ip  - prior probability that location i contains the target; 

– iα  - prior probability of a "false alarm" , or a false-positive outcome, the 

conditional probability that an inspection declares that a target is found in cell i 
whereas, in fact, this location does not contain a target;  

– 
iβ  - prior probability of overlooking, or a false-negative outcome, the 

conditional probability that an inspection declares that location i has no target 
but in fact it has;  

– 
it  - expected time to inspect cell i by one of the teams 

– 
ic  - expected number of potential survivors in cell i. 

Each sequential inspection strategy specifies a finite sequence  

[ ] [ ] [ ] [ ]0 , 1 , 2 , ..., , ...s S s s s n=  

where s[n] denotes the cluster's index which is inspected by K parallel teams at the nth 

step of sequence s, s[n]∈{1,2,...} and s[0] is an initializing sub-sequence of locations 
which will be defined below. 

Given the above input data, the optimal search scenario is specified by the following 
conditions: 

i. the clusters are inspected sequentially; 
ii.  for any search strategy and any cluster, the outcomes of inspections are 

independent;  
iii.  the stopping rule is defined as follows: 

For any integer h, define - iha  - the conditional probability that cluster i  contains 

the target given that it contains the target in h inspections. iha  depends on the given pi,

iβ . In addition, let iH  ("height") be the minimal positive integer such that iha CL≥  

where CL  is a priori given confidence level. It should be noted that all of the 'iH s  
can be computed by the rescue manager before the search process starts.  

Given a sequence s of inspections, the search ends when either the search-rescue time 
reserve expires, or, at some step, all clusters return the outcome of “the target is claimed 

to be in location i  for the th
iH time in s ”.  
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For a given sequences , we shall use the following notation:  

– [ ] [ ]( ),s nT T s n s= – time (accumulated) spent to detect the target in [ ]s n

on the thn  step of strategy s; 
– [ ] [ ]maxs n s mm

T t= where maximum is taken over all the teams working in 

cell; 

– [ ]S nP -the probability that targets, located in cell[ ]s n , are detected [ ]s nH  

times before the thn step of strategys . [ ]s nH  and [ ]S nP  depend on iα  and 

iβ , and guarantee required confidence level; in practice, [ ]s nH is equal 1 

or 2. This concept and its relationship with the confidence level CL is 
described below.  

– [ ]s nc – lifesaving efficiency in location (cluster)[ ]s n . 

The expected (linear) total lifesaving efficiency, F(s), is defined as follows: 

[ ] [ ] [ ]

[ ]

1

0

max         ( )

subject to

                

s n s n s n
n

s n

F s P c T

T T

∞

=

=

≤

∑
.
 

In the above notation, the stochastic scheduling problem is to find a sequence *s  that 

maximizes the expected efficiency ( )F s subject to the search time reserve. 

One should note that the above formulation gives rise to three special cases: when 
0i iα β= = for every i , the problem is known as the perfect inspections problem 

researched in the finite-horizon scheduling literature. If all 'i sα are zero but 0iβ ≠  for 

all 'i s  we have the false-negative inspections and if 0, 0i iα β≠ =  for every i  we 

have the false-positive inspections. In addition, when the problem is minimization, and 
the time reserve constrain is relaxed, the model is much simpler and can be solved using 
a proposed method in [12]. 

4   Problem Analysis and Algorithm 

We begin by defining  

{Inspection declares that cluster  has a target}iB i= ,  

{Cluster  really contains the target}iC i=  
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and using the notations in Section 3 we have ( )i ip P C= , ( )i i iP B Cα = and 

( )i i iP B Cβ = .  

Now, the probability that the target is discovered in cell i , defined if , is equal to 

( ) ( ) ( ) ( ) ( ) ( ) ( )/ / 1 1i i i i i i i i i i i if P B P C P B C P C P B C p pβ α= = + = ⋅ − + − , 

while the probability to correctly detect the target in cell i  within a single inspection is 
equal to 

( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( )

/ 1
/

1 1/ /
i i i i i

i i
i i i ii i i i i i

P C P B C p
P C B

p pP C P B C P C P B C

β
β α
⋅ −

= =
⋅ − + −+

 

Theorem 1. Given a sequence s, the conditional probability iha  - the probability that 

location i contains the target given the probability it contains the target in h inspections 
is given by: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

( )
( ) ( )

1 2

1 2

1 2

... /
/ ...

...

1

1 1

h
i i i i ih

ih i i i i h
i i i

h

i i

h h
i i i i

P C P B B B C
a P C B B B

P B B B

p

p p

β
β α

⋅ ∩ ∩ ∩
= ∩ ∩ ∩ =

∩ ∩ ∩

⋅ −
=

⋅ − + −

Corollary. Given a predetermined confidence level CL for the probability iha  defined 

above, iH  is the minimal integer satisfying  

( )
( ) ( )

1

1 1

i

i i

H

i i
ih H H

i i i i

p
a CL

p p

β
β α

⋅ −
= ≥

⋅ − + −  for any i . 

Inspections in each cluster iM  are done in parallel by different rescue teams in pre-

specified times. The search strategy is a finite sequence of clusters (more exactly, their 

index), where, at step n, the cluster [ ]s n is inspected and rescued: 

[ ] [ ] [ ]0 , 1 , ..., , ...s S s s n= . 

Denote by [ ],s k n  the number of a cell in cluster [ ]s n  inspected at the nth step of 

strategys . Denote by [ ]* ,s k n  the total number of inspections of cell [ ]nks ,  counting 

from the first inspection up to its inspection in cluster [ ]s n inspected at the thn  step of 

strategys . Notice that [ ]* ,s k n  can be easily computed for all k  as soon as the 
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sequence s is known up to its thn  step. Denote by [ ]nksc ,  the rescue effectiveness 

assigned to cell[ ]nks , . Let [ ]nksT ,  be the time spent for inspection of all cells of all the 

clusters in strategy s  up to location [ ]nks , , 

[ ] ( ) [ ] [ ] 1,max1
1

,,
1

, ≥++−= ∑∑
==

ntTHtT
k

i
nkssm

N

i
iinks

 

The search effectiveness attributed to strategy s is 

( ) ( )( ) [ ] ( ) ( ) [ ] ( )( )

[ ] [ ]
[ ]

[ ]
[ ]( ) [ ] [ ]

[ ]
[ ]

*
,

, ,
1 1

*
,

, , , ,
1 1 ,

, 1
1

1

k

n
s k n s n

j

s k n s k n
n k

j s k n H H

s k n s k n s k n s k n
n k s k n

F s Exp R s R s P R s R s

s k n
c T f f

H

∞

= =

∞ −

= =

= = ⋅ = =

 −
= − ⋅  − 

∑∑

∑∑

 

Theorem 2. The strategy s* is an optimal strategy for the max-efficiency search 

problem iff the ratios  

[ ]

[ ] [ ]

[ ]

[ ] [ ] [ ]( )
[ ]

[ ]
[ ]
[ ]

[ ]( ) [ ] [ ]

[ ]
[ ]

[ ]

*
, ,

*
, , , ,

1 1

*
,

, , ,
1 ,

,

, 1
1

1

n n

n
s k n s k n

j j

s k n s k n s k n s k n
k k

s n
s n s n

j s k n h h

s k n s k n s k n
k s k n

s n

c P c P s k n
Q

T T

s k n
c f f

h

T

= =

−

=

⋅ ⋅
= =

 −
⋅ − ⋅  − =

∑ ∑

∑

 

are arranged in non-decreasing  order of the magnitude.  
The proof is by the interchange argument and skipped here. 

5   Example 

Consider the problem of searching a target in a stochastic setting described in [3]. The 
rescue team has limited time (to perform the search and rescue operation) and limited 
memory (the only saved information is the information on how many times a target has 
been detected in each visited cell up to a current step in the search sequence). The search 
stops as soon as the limit of the search time is exhausted. The area of interest is divided 
into N possible locations containing the hidden targets. In our example, we consider an 

area divided into four sub-areas with one cell in each ( { }1 2 3 4, , ,M c c c c= ) two 

teams ( 2K = ) and 0 24T = (hours). In addition, there are three clusters,
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{ }1 1 2,C c c= , { }2 3 3,C c c= and { }4 3 4,C c c= . The input data is given in Table 1 

below and the confidence level is 95%. 

Table 1. Input Data 

Cells 1c  2c  3c  4c  

( )i ip P C=  0.5 0.6 0.75 0.01 

( )i i iP B Cα =  0.07 0.10 0.12 0.10 

( )/i i iP B Cβ =  0.03 0.07 0.05 0.04 

it  5 8 10 10 

ic
 

20 10 12 2 

 

Using Table 1 and (1)-(2) we can compute if  and iH for 1, 2, 3, 4.i =  For 

example, for the first cell ( 1i = ) , we have 1 0.52f = , 11 0.932692a = and  12a  is 

equal to 0.994819. Following, 1H  equals 2 for a CL of 95%. 

Table 2 below presents the values of if and iH  for all four cells.  

Table 2. Computation of if and iH  

Cells 1c  2c  3c  4c  

if  0.52 0.618 0.8025 0.0106 

iH  2 2 1 4 

 
The optimal strategy is as follows: 

[ ] 1 1 2 10 , , , , , . . . 1, 2 ;1, 2 ;1, 2 ; 3 , 3 ,1, 2 , . . .S C C C C =  

where [ ]0 1, 2S = . The search process rapidly converges and stops after three steps 

demanding 23 hours: probability that the process does not stops at step  1 is 1; that it 
does not stop at step  2 is 0.4687, at step 3 is 0.1668, at step 4 is 0.0111, and at step 5 is 
zero. 

6   Conclusion 

In this work, we present a fast algorithm to solve the two-stage detection-and-rescue 
planning problem. In order to optimize the scheduling process, we use a greedy 
strategy, an index-based strategy, which is proven to be optimal when the objective is 
to maximize the lifesaving efficiency. The "best cluster” is selected at each stage, and 
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the process is proved to be rapidly converging. Our solution is both simple and 
computationally efficient. When the confidence level is pre-defined, such local search 
strategies guarantees an optimal (max-efficiency) search sequences. In addition, using 
the suggested greedy methods can be applied to other search scenarios (e.g., with 
moving targets, agents-with-memory, etc.) and combining it with dynamic 
programming and biology-motivated heuristics can be a perspective direction for 
solving more complicated detection-and-rescue planning problems. 
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